DS05-11037-1E

MEMORY Un-buffered

$4 \text{ M} \times 64 \text{ BIT}$ SYNCHRONOUS DYNAMIC RAM DIMM

MB8504S064BZ-75/-102/-10

168-pin, 4 Clock, 2-bank, based on 2 M×8 Bit SDRAMs with SPD

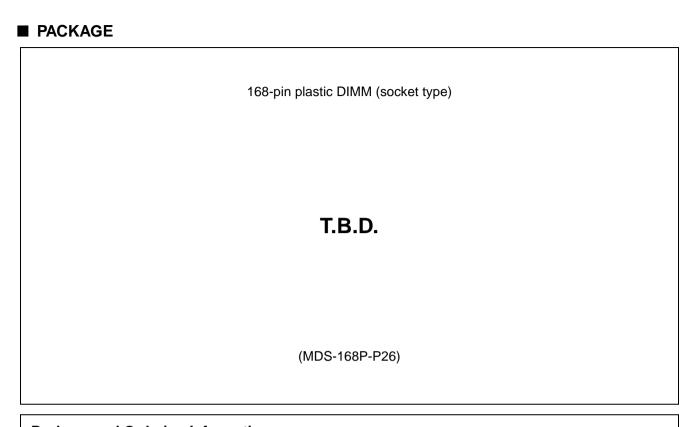
■ DESCRIPTION

The Fujitsu MB8504S064BZ is a fully decoded, CMOS Synchronous Dynamic Random Access Memory (SDRAM) Module consisting of sixteen MB81F16822B devices which organized as two banks of 2 M × 8 bits and a 2K-bit serial EEPROM on a 168-pin glass-epoxy substrate.

The MB8504S064BZ features a fully synchronous operation referenced to a positive edge clock whereby all operations are synchronized at a clock input which enables high performance and simple user interface coexistence.

The MB8504S064BZ is optimized for those applications requiring high speed, high performance and large memory storage, and high density memory organizations.

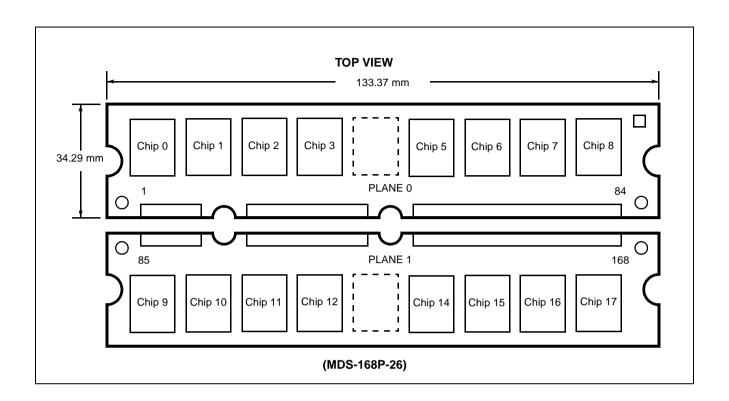
This module is ideally suited for workstations, PCs, laser printers, and other applications where a simple interface is needed.


■ PRODUCT LINE & FEATURES

Pa	nrameter	MB8504S064BZ-75	8504S064BZ-75 MB8504S064BZ-102			
Clock Frequenc	у	133 MHz max.	100 MHz max.	100 MHz max.		
Burst Mode Cyc	cle Time	7.5 ns max.	10 ns max.	10 ns max.		
Output Valid fro	m Clock	6 ns max. (CL = 3)	6 ns max. (CL = 2)	6 ns max. (CL = 3)		
Power	Two Banks Active	5098 mW max.	4608 mW max.	4032 mW max.		
Dissipation	Self Refresh Mode	23.04 mW max.				

- Un-buffered 168-pin DIMM Socket Type (Lead pitch: 1.27 mm)
- Conformed to JEDEC Standard (4 CLK)
- Organization: 4,194,304 words × 64 bits
- 3.3 V ±0.3 V Supply Voltage
- All input/output LVTTL compatible
- Conformed to Intel PC/100 spec

- 4096 Refresh Cycle every 65.6 ms
- Auto and Self Refresh
- CKE Power Down Mode
- DQM Byte Masking (Read/Write)
- Memory: MB81F16822B (2 M × 8, 2-bank) × 16 pcs.
 Serial Presence Detect (SPD) with Serial EEPROM: JEDEC Standard SPD Format
 - · Module size:


1.35" (height) \times 5.25" (length) \times 0.157" (thickness)

− 168-pin DIMM, order as MB8504S064BZ-xxDG (DG = Gold Pad)

■ PIN ASSIGNMENTS

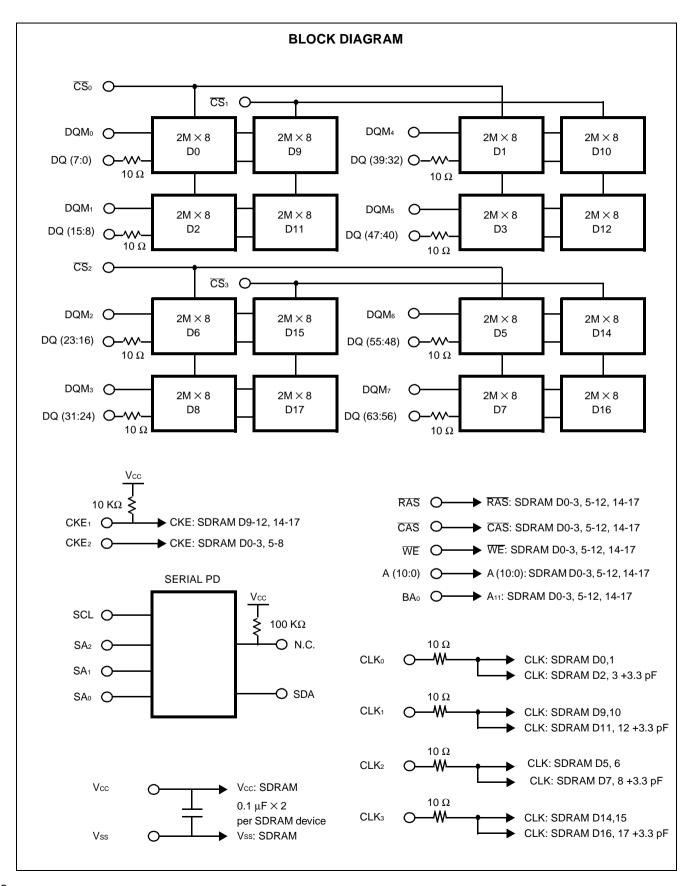
Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
1	Vss	29	DQMB ₁	57	DQ18	85	Vss	113	DQMB₅	141	DQ ₅₀
2	DQ ₀	30	CS ₀	58	DQ ₁₉	86	DQ ₃₂	114	CS₁	142	DQ ₅₁
3	DQ ₁	31	N.C.	59	Vcc	87	DQ33	115	RAS	143	Vcc
4	DQ ₂	32	Vss	60	DQ ₂₀	88	DQ34	116	Vss	144	DQ52
5	DQ₃	33	A ₀	61	N.C.	89	DQ35	117	A 1	145	N.C.
6	Vcc	34	A ₂	62	N.C.	90	Vcc	118	A 3	146	N.C.
7	DQ4	35	A4	63	CKE ₁	91	DQ36	119	A 5	147	N.C.
8	DQ ₅	36	A ₆	64	Vss	92	DQ ₃₇	120	A ₇	148	Vss
9	DQ ₆	37	A8	65	DQ ₂₁	93	DQ ₃₈	121	A 9	149	DQ ₅₃
10	DQ ₇	38	A10	66	DQ ₂₂	94	DQ39	122	BA ₀	150	DQ ₅₄
11	DQ ₈	39	N.C.	67	DQ ₂₃	95	DQ ₄₀	123	N.C.	151	DQ ₅₅
12	Vss	40	Vcc	68	Vss	96	Vss	124	Vcc	152	Vss
13	DQ ₉	41	Vcc	69	DQ ₂₄	97	DQ41	125	CLK ₁	153	DQ56
14	DQ ₁₀	42	CLK ₀	70	DQ ₂₅	98	DQ ₄₂	126	N.C.	154	DQ ₅₇
15	DQ ₁₁	43	Vss	71	DQ ₂₆	99	DQ ₄₃	127	Vss	155	DQ ₅₈
16	DQ ₁₂	44	N.C.	72	DQ ₂₇	100	DQ44	128	CKE	156	DQ59
17	DQ ₁₃	45	CS ₂	73	Vcc	101	DQ ₄₅	129	CS ₃	157	Vcc
18	Vcc	46	DQMB ₂	74	DQ ₂₈	102	Vcc	130	DQMB6	158	DQ ₆₀
19	DQ ₁₄	47	DQMB ₃	75	DQ29	103	DQ ₄₆	131	DQMB7	159	DQ ₆₁
20	DQ ₁₅	48	N.C.	76	DQ ₃₀	104	DQ ₄₇	132	N.C.	160	DQ ₆₂
21	N.C.	49	Vcc	77	DQ31	105	N.C.	133	Vcc	161	DQ ₆₃
22	N.C.	50	N.C.	78	Vss	106	N.C.	134	N.C.	162	Vss
23	Vss	51	N.C.	79	CLK ₂	107	Vss	135	N.C.	163	CLK ₃
24	N.C.	52	N.C.	80	N.C.	108	N.C.	136	N.C.	164	N.C.
25	N.C.	53	N.C.	81	N.C.	109	N.C.	137	N.C.	165	SA ₀
26	Vcc	54	Vss	82	SDA	110	Vcc	138	Vss	166	SA ₁
27	WE	55	DQ ₁₆	83	SCL	111	CAS	139	DQ48	167	SA ₂
28	DQMB ₀	56	DQ ₁₇	84	Vcc	112	DQMB ₄	140	DQ49	168	Vcc

■ PIN DESCRIPTIONS

Symbol	I/O	Function	Symbol	I/O	Function
A ₀ to A ₁₀ , BA ₀	1	Address Input	DQ ₀ to DQ ₆₃	I/O	Data Input/Data Output
RAS	I	Row Address Strobe	Vcc	_	Power Supply (+3.3 V)
CAS	I	Column Address Strobe	Vss	_	Ground (0 V)
WE	I	Write Enable	N.C.	_	No Connection
DQMB ₀ to DQMB ₇	I	Data (DQ) Mask	SA ₀ to SA ₂	I	Serial PD Address Input
CLK ₀ to CLK ₃	I	Clock Input	SCL	I	Serial PD Clock
CKE ₀ , CKE ₁	ı	Clock Enable	SDA	I/O	Serial PD Address/Data Input/Output
CS₀ to CS₃	I	Chip Select			

■ SERIAL-PD INFORMATION

D) (10	Function Described		I	lex Value	•
Byte	Function Described		-75	-102	-10
0	Defines Number of Bytes Written into	128 Byte	80h	80h	80h
	Serial Memory at Module Manufacture				
1	Total Number of Bytes of SPD Memory Device	256 Byte	08h	08h	08h
2	Fundamental Memory Type	SDRÁM	04h	04h	04h
3	Number of Row Addresses	11	0Bh	0Bh	0Bh
4	Number of Column Addresses	9	09h	09h	09h
5	Number of Module Banks	2 bank	02h	02h	02h
6	Data Width	64 bit	40h	40h	40h
7	Data Width (Continuation)	+0	00h	00h	00h
8	Interface Type	LVTTL	01h	01h	01h
9	SDRAM Cycle Time (Highest CAS Latency)	7.5/10/10 ns	75h	A0h	A0h
10	SDRAM Access from Clock (Highest CAS Latency)	6/6/6 ns	60h	60h	60h
11	DIMM Configuration Type	Non-Parity	00h	00h	00h
12	Refresh Rate/Type	Self, Normal	80h	80h	80h
13	Primary SDRAM Width	×8	08h	08h	08h
14	Error Checking SDRAM Width	0	00h	00h	00h
15	Minimum Clock Delay for Back to Back Random Column	1 Cycle	01h	01h	01h
	Addresses	,			
16	Burst Lengths Supported	1, 2, 4, 8, Page	8Fh	8Fh	8Fh
17	Number of Banks on Each SDRAM Device	2 bank	02h	02h	02h
18	CAS Latency	2, 3	06h	06h	06h
19	CS Latency	Ó	01h	01h	01h
20	Write Latency	0	01h	01h	01h
21	SDRAM Module Attributes	UN-buffer	00h	00h	00h
22	SDRAM Device Attributes	*1	06h	06h	06h
23	SDRAM Cycle Time (2nd. Highest CAS Latency)	11.5/10/15 ns	B5h	A0h	A5h
24	SDRAM Access from Clock (2nd. Highest CAS Latency)	7/6/8 ns	70h	60h	80h
25	SDRAM Cycle Time (3rd. Highest CAS Latency)	No Support	00h	00h	00h
26	SDRAM Access from Clock (3rd. Highest CAS Latency)	No Support	00h	00h	00h
27	Minimum Row Precharge Time (t _{RP})	22.5/20/30 ns	17h	14h	1Eh
28	Row Activate to Row Activate Minimum (trrd)	15/20/20 ns	0Fh	14h	14h
29	RAS to CAS Delay Min. (trcd)	22.5/20/30 ns	17h	14h	1Eh
30	Minimum RAS Pulse Width	45/50/50 ns	2Dh	32h	32h
31	Module Bank Density	16 MByte	04h	04h	04h
32 to 61	Unused Storage Locations		00h	00h	00h
62	SPD Data Revision Code	1	01h	01h	01h
63	Checksum for Byte 0 to 62	*2	74h	7Eh	B7h
64 to 98	Manufacturer's Information: Unused Storage		00h	00h	00h
99 to 125			00h	00h	00h
126	Intel Specification Frequency	66 MHz	66h	66h	66h
127	Intel Specification CAS Latency Support	CL = 2	02h	02h	02h
128+	Unused Storage Locations		_	_	_


Note: Any write operation must NOT be executed into the addresses of Byte 0 to Byte 127. Some or all data stored into Byte 0 to Byte 127 may be broken.

*1. Byte 22: SDRAM Device Attributes

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TBD	TBD	Upper V _{CC} tolerance	Lower Vcc tolerance	Supports Write 1 /Read Burst	Supports Precharge All	Supports Auto- Precharge	Supports Early RAS Precharge
0	0	0	0	0	1	1	0

^{*2.} byte 63: Checksum for Byte 0 to 62

This byte is the checksum for bytes 0 through 62. This byte contains the value of the low 8-bits of the arithmetic sum of bytes 0 through 62.

■ ABSOLUTE MAXIMUM RATINGS (See WARNING)

Parameter	Symbol	Va	Unit	
Farameter	Symbol	Min.	Max.	Offic
Supply Voltage*	Vcc	-0.5	+4.6	V
Input Voltage*	Vin	-0.5	+4.6	V
Output Voltage*	Vоит	-0.5	+4.6	V
Storage Temperature	Тѕтс	- 55	+125	°C
Power Dissipation	P _D	_	20.8	W
Output Current (D.C.)	Іоит	-50	+50	mA

^{*:} Voltages referenced to Vss (= 0 V)

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Davameter	Notes	Cumbal		l lni4		
Parameter	Notes	Symbol	Min.	Тур.	Max.	Unit
Cupply Voltage		Vcc	3.0	3.3	3.6	V
Supply Voltage		Vss	0	0	0	V
Input High Voltage, All Inputs	*1	ViH	2.0	_	Vcc+0.5	V
Input Low Voltage, All Inputs	*2	VIL	-0.5	_	0.8	V
Ambient Temperature		TA	0	_	+70	°C

^{*1.} Overshoot limit: V_{IH} (max.) = TBD

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

^{*2.} Undershoot limit: V_{IL} (min) = -1.5 V AC (Pulse Width ≤ 5 ns)

■ CAPACITANCE

 $(Vcc = +3.3 \text{ V}, f = 1 \text{ MHz}, T_A = +25^{\circ}\text{C})$

Parame	for	Symbol	Va	lue	Unit
raiaille	lei	Symbol	Min.	Max.	Oilit
	A ₀ to A ₁₀ , BA ₀	C _{IN1}	_	82	pF
	RAS, CAS, WE	CIN2	_	91	pF
	CS₀ to CS₃	C _{IN3}	_	32	pF
Input Conscitones	CKE ₀ , CKE ₁	C _{IN4}	_	59	pF
Input Capacitance	CLK ₀ to CLK ₃	C _{IN5}	_	45	pF
	DQMB ₀ to DQMB ₇	CIN6	_	21	pF
	SCL	Cscl	_	6	pF
	SA ₀ , SA ₁ , SA ₂	Csa	_	6	pF
Input/Output Congoitance	SDA	CSDA	_	6	pF
Input/Output Capacitance	DQ ₀ to DQ ₆₃	CDQ	_	19	pF

■ DC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.)

Daramotor Nata	•	Symbol	Condition	Va	lue	Unit
Parameter Note	5	Symbol	Condition	Min.	Max.	Unit
	MB8504S064BZ-75	Burst Length = 4, tcc = min for BL = 4, tcc = min, One Bank Active, Outputs Open, O V ≤ VIN ≤ Vcc S4BZ-102	mA			
	MB8504S064BZ-102	Icc1s	tcк = min,	_	960	mA
MB8504S064BZ-75		Outputs Open,		800	mA	
			Condition Min. Max. Min. Max.	mA		
	MB8504S064BZ-102	B8504S064BZ-75 B8504S064BZ-102 B8504S064B	mA			
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mA				
	$I_{CC2P} \begin{tabular}{l} CKE = V_{IL}, tck = min, \\ All Banks Idle, \\ Power Down Mode, \\ 0 \ V \le V_{IN} \le Vcc \\ \begin{tabular}{l} CKE = V_{IL}, \\ CLK = V_{IH} \ or \ V_{IL}, \\ \end{tabular}$		6.4	mA		
		ICC2PS	CLK = V _{IH} or V _{IL} , All Banks Idle, Power Down Mode,	_	6.4	mA
	MB8504S064BZ-75		CKE = V _{IH} , tck = min.		432	
	MB8504S064BZ-102	Social Street Social Str	All Banks Idle,	_	320	mA
	MB8504S064BZ-10					
		Icc2ns	CLK = V _{IH} or V _{IL} , All Banks Idle, Input Signal are Stable,	_	240	mA
		Іссзр	Any Bank Active,	_	80	mA
Active Standby Current		Іссзрѕ	CLK = V _{IH} or V _{IL} , Any Bank Active,	_	48	mA
(Power Supply Current)	MB8504S064BZ-75		CKE = V _{IH} , tck = min.		864	
MB8504S064BZ-75 MB8504S064BZ-102 MB8504S064BZ-75 MB8504S064BZ-75 MB8504S064BZ-102 MB8504S064BZ-		Іссзи	Any Bank Active,	-	640	mA
		640				
		Іссзиѕ	CLK = V _{IH} or V _{IL} , Any Bank Active,	_	400	mA

(Continued)

(Continued)

Doromotor	Notes		Cumbal	Condition	Va	lue	Unit
Parameter	notes		Symbol	Condition	Min.	Max. 1416 1120 1120 1120 1280 1280 1280 6.4 6.4	Unit
Buret Made Current		MB8504S064BZ-75		tck = min, Gapless data,	_	1416	mA
Input Leakage Curre	*1	MB8504S064BZ-102	Icc4	Burst Length = 4, Outputs open,	_	1120	mA
Supply Current)		MB8504S064BZ-10		Multiple-banks Active, $0 \text{ V} \leq \text{V}_{\text{IN}} \leq \text{V}_{\text{CC}}$	_	Max. 1416 1120 1120 1120 1120 1280 1280 1280 16.4 16.4 180	mA
Auto-refresh Current		MB8504S064BZ-75	Auto Refresh, — 1600 mA 102 Iccs $\begin{array}{c} \text{LCS} \\ LCS$	mA			
(Average Power	*1	MB8504S064BZ-102	Icc5	•	_	1280	mA
Supply Current)		MB8504S064BZ-10		,	_	Max. 1416 1120 1120 1600 1280 1280 6.4 80 20 —	mA
Solf refreeb Current			Icc6	CKE ≤ 0.2 V,	_	6.4	mA
	Self-refresh Current Average Power Supply Current) $0 \ V \le V_{IN} \le \hat{V}_{CC}$ Asynchronous Self-				6.4	mA	
Input Leakage Currer	ıt (All In _l	outs)	lu	$0 \text{ V} \le \text{V}_{\text{IN}} \le \text{V}_{\text{CC}}$ All other pins not under test = 0 V $3.0 \text{ V} \le \text{V}_{\text{CC}} \le 3.6 \text{ V}$	-80	80	μΑ
Output Leakage Curre	ent		ILO	Output is disabled (Hi-Z) $0 \text{ V} \leq \text{V}_{\text{IN}} \leq \text{V}_{\text{CC}}$ $3.0 \text{ V} \leq \text{V}_{\text{CC}} \leq 3.6 \text{ V}$	-20	20	μА
LVTTL Output High Voltage	*2		Vон	Iон = −2.0 mA	2.4		V
LVTTL Output Low Voltage	*2		Vol	loL = +2.0 mA		0.4	V

- Notes: *1. Icc depends on the output termination, load conditions, clock cycle rate and signal clock rate. The specified values are obtained with the output open and no termination register.
 - *2. Voltages referenced to Vss (= 0 V)
 - *3. An initial pause (DESL on NOP) of 200 µs is required after power-on followed by a minimum of eight Auto-refresh cycles.
 - *4. Values except Icc1s, Icc1D and Icc4 are for when one side of the double-sided module is in standby mode (Icc2N) and the other side has two banks active in burst mode.
 - *5. DC characteristics is the Serial PD standby state (V_{IN} = GND or V_{CC}).

■ AC CHARACTERISTICS

(1) BASE CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.)

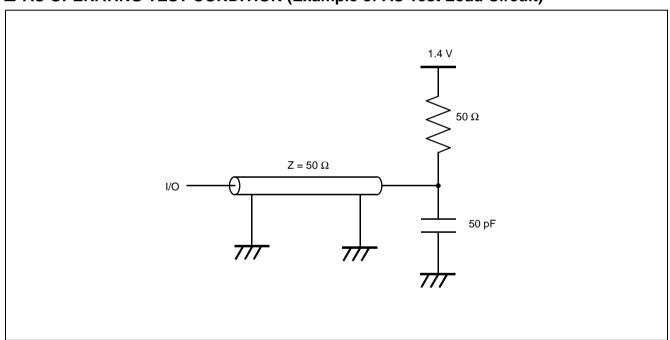
No.	Parameter Notes		Symbol		S064BZ 75		S064BZ 02		S064BZ	Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
1	Clock Period	CL = 3	t ck3	7.5	_	10	_	10	_	ns
'	Clock Fellod	CL = 2	tck2	11.5		10	_	15	_	115
2	Clock High Time		t cH	2.5	_	3	_	3	_	ns
3	Clock Low Time		t cL	2.5	_	3	_	3	_	ns
4	Input Setup Time		t sı	2	_	2	_	2	_	ns
5	Input Hold Time		tнı	1	_	1	_	1	_	ns
6	Output Valid from Clock *1, *2	CL = 3	t _{AC3}	_	6	_	6	_	6	ns
O	(tclk = min)		t AC2	_	7	_	6	_	8	115
7	Output in Low-Z		t LZ	0		0		0		ns
8	Output in High-Z *3	CL = 3	tнzз	2	6	3	6	3	6	ns
0	Output in riigh-2	CL = 2	t _{HZ2}	3	7	3	6	3	8	115
9	Output Hold Time	CL = 3	- t он	2	_	3	_	3	_	no
9	Output Hold Tillle	CL = 2	LOH	3	_	3	_	3	_	ns
10	Time between Auto-Refres	sh	t REFI	_	15.6	_	15.6	_	15.6	μs
11	Time between Refresh		t ref	_	65.6	_	65.6	_	65.6	ms
12	CKE Low (or CLK Low) Ho for Asynchronous Self-Ref Entry	t ase	100	200	100	200	100	200	μs	
13	Transition Time		t ⊤	0.5	2	0.5	2	0.5	2	ns
14	CKE Setup Time for Powe Exit Time	r Down	tcksp	3	_	3		3	_	ns

(2) BASE VALUES FOR CLOCK COUNT/LATENCY

No.	Parameter	Notes	Symbol		S064BZ 75	MB8504S064BZ -102		MB8504S064BZ -10		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
1	RAS Cycle Time	*4	t RC	67.5	_	70	_	80	_	ns
2	RAS Precharge Time		t RP	22.5	_	20	_	30	_	ns
3	RAS Active Time		t RAS	45	100000	50	100000	50	100000	ns
4	RAS to CAS Delay Time	*5	t RCD	22.5	_	20	_	30	_	ns
5	Write Recovery Time		t wr	7.5	_	10	_	10	_	ns
6	Data-in to Precharge Lead	l Time	t DPL	7.5	_	10	_	10	_	ns
7	Data-in to Active/Refresh	CL = 3	t _{DAL3}	2 cyc + trp	_	2 cyc + trp	_	2 cyc + trp	_	ns
′	Command Period	CL = 2	tDAL2	1 cyc + trp	_	1 cyc + t _{RP}	_	1 cyc + trp	_	115
8	Mode Register Set Cycle Time		trsc	15	_	20	_	20	_	ns
9	RAS to RAS Bank Active Delay Time		t rrd	15	_	20	_	20	_	ns

(3) CLOCK COUNT FORMULA (*6)

$$Clock \ge \frac{\text{Base Value}}{\text{Clock Period}} \text{ (Round off a whole number)}$$


(4) LATENCY (The latency values on these parameters are fixed regardless of clock period.)

No.	Parameter		Symbol	MB8504S064BZ -75	MB8504S064BZ -102	MB8504S064BZ -10	Unit
1	CKE to Clock Disable		Іске	1	1	1	Cycle
2	DQM to Output in High-Z		lpqz	2	2	2	Cycle
3	DQM to Input Data Delay		IDQD	0	0	0	Cycle
4	Last Output to Write Command Delay		lowd	2	2	2	Cycle
5	Write Command to Input Delay	Data	I DWD	0	0	0	Cycle
	Precharge to Output in High-Z Delay	CL = 3	Іпонз	3	3	3	Cycle
6		CL = 2	IROH2	2	2	2	
7	Burst Stop Command to Output in High-Z Delay	CL = 3	Івѕнз	3	3	3	Cycle
′		CL = 2	BSH2	2	2	2	
8	CAS to CAS Delay (min)		Іссь	1	1	1	Cycle
9	CAS Bank Delay (min)		Ісво	1	1	1	Cycle

Notes: *1. Assumes trcp is satisfied.

- *2. tac also specifies the access time at burst mode except for first access.
- *3. Specified where output buffer is no longer driven.
- *4. Actual clock count of tRC (IRC) will be sum of clock count of tRAS (IRAS) and tRP (IRP).
- *5. Operation within the trop (min) ensures that access time is determined by trop (min) +tac (max); if trop is greater than the specified trop (min), access time is determined by tac.
- *6. All base values are measured from the clock edge at the command input to the clock edge for the next command input.
 - All clock counts are calculated by a simple formula:
 - clock count equals base value divided by clock period (round off to a whole number).
- *7. An initial pause (DESL on NOP) of 200 μ s is required after power-up followed by a minimum of eight Auto-refresh cycles.
- *8. 1.4 V or VREF is the reference level for measuring timing of signals. Transition times are measured between Vℍ (min) and Vև (max).
- *9. AC characteristics assume $t_T = 1$ ns and 50 pF of capacitive load.

■ AC OPERATING TEST CONDITION (Example of AC Test Load Circuit)

^{*}Source: See MB81F16822B Data Sheet for details on the electricals.

■ SERIAL PRESENCE DETECT(SPD) FUNCTION

1. PIN DESCRIPTIONS

SCL (Serial Clock)

SCL input is used to clock all data input/output of SPD

SDA (Serial Data)

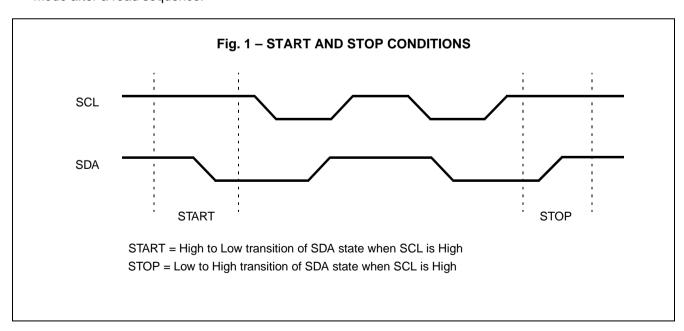
SDA is a common pin used for all data input/output of SPD. The SDA pull-up resistor is required due to the open-drain output.

SA₀, SA₁, SA₂ (Address)

Address inputs are used to set the least significant three bits of the eight bits slave address. The address inputs must be fixed to select a particular module and the fixed address of each module must be different each other.

2. SPD OPERATIONS

CLOCK and DATA CONVENTION


Data states on the SDA can change only during SC L= Low. SDA state changes during SCL = High are indicated start and stop conditions. Refer to Fig. 1 below.

START CONDITION

All commands are preceded by a start condition, which is a transition of SDA state from High to Low when SCL = High. SPD will not respond to any command until this condition has been met.

STOP CONDITION

All read or write operation must be terminated by a stop condition, which is a transition of SDA state from Low to High when SCL = High. The stop condition is also used to make the SPD into the state of standby power mode after a read sequence.

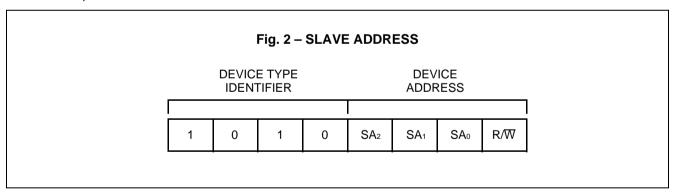
ACKNOWLEDGE

Acknowledge is a software convention used to indicate successful data transfer. The transmitting device, either master or slave, will release the bus after transmitting eight bits. During the ninth clock cycle the receiver will put the SDA line to Low in order to acknowledge that it received the eight bits of data.

The SPD will respond with an acknowledge when it received the start condition followed by slave address issued by master.

In the read operation, the SPD will transmit eight bits of data, release the SDA line and monitor the line for an acknowledge. If an acknowledge is detected and no stop condition is issued by master, the SPD will continue to transmit data. If an acknowledge is not detected, the SPD will terminated further data transmissions. The master must then issue a stop condition to return the SPD to the standby power mode.

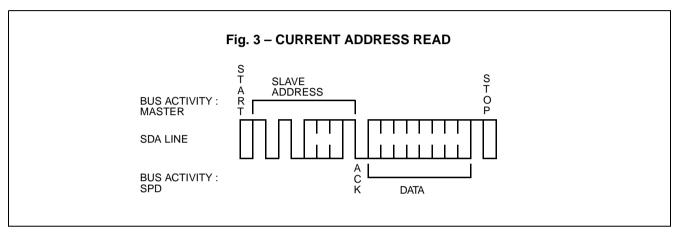
In the write operation, upon receipt of eight bits of data the SPD will respond with an acknowledge, and await the next eight bits of data, again responding with an acknowledge until the stop condition is issued by master.


SLAVE ADDRESS ADDRESSING

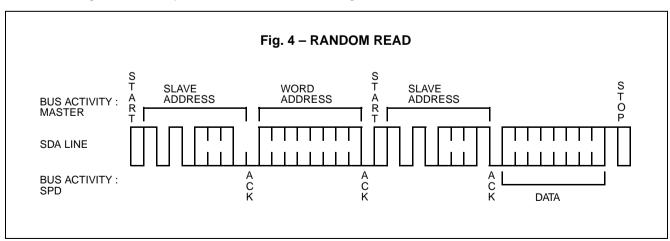
Following a start condition, the master must output the eight bits slave address. The most significant four bits of the slave address are device type identifier. For the SPD this is fixed as 1010[B]. Refer to the Fig. 2 below.

The next three significant bits are used to select a particular device. A system could have up to eight SPD devices —namely up to eight modules— on the bus. The eight addresses for eight SPD devices are defined by the state of the SA₀, SA₁ and SA₂ inputs.

The last bit of the slave address defines the operation to be performed. When R/W bit is "1", a read operation is selected, when R/W bit is "0", a write operation is selected.

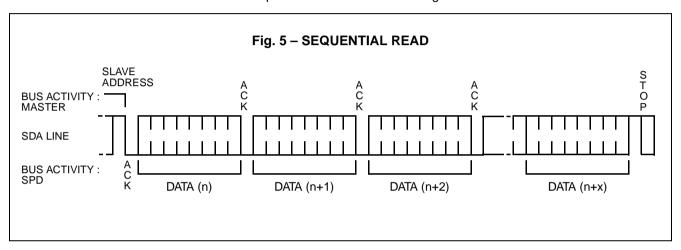

Following the start condition, the SPD monitors the SDA line comparing the slave address being transmitted with its slave address (device type and state of SA₀, SA₁, and SA₂ inputs). Upon a correct compare the SPD outputs an acknowledge on the SDA line. Depending on the state of the R/W bit, the SPD will execute a read or write operation.

3. READ OPERATIONS


CURRENT ADDRESS READ

Internally the SPD contains an address counter that maintains the address of the last data accessed, incremented by one. Therefore, if the last access (either a read or write operation) was to address(n), the next read operation would access data from address(n+1). Upon receipt of the slave address with the R/W bit = "1", the SPD issues an acknowledge and transmits the eight bits of data during the next eight clock cycles. The master terminates this transmission by issuing a stop condition, omitting the ninth clock cycle acknowledge. Refer to Fig. 3 for the sequence of address, acknowledge and data transfer.

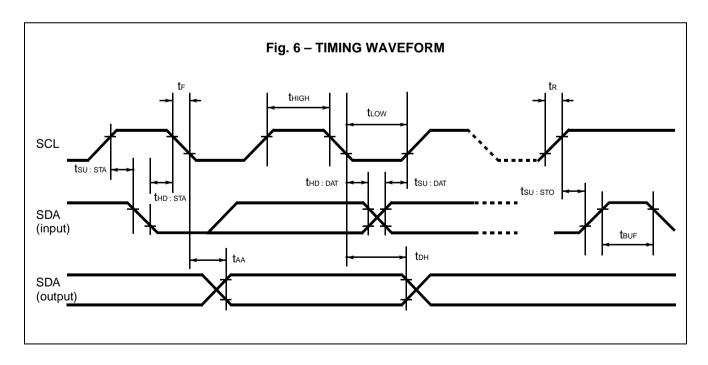
RANDOM READ


Random Read operations allow the master to access any memory location in a random manner. Prior to issuing the slave address with the R/ \overline{W} bit = "1", the master must first perform a "dummy" write operation on the SPD. The master issues the start condition, and the slave address followed by the word address. After the word address acknowledge, the master immediately reissues the start condition and the slave address with the R/ \overline{W} bit = "1". This will be followed by an acknowledge from the SPD and then by the eight bits of data. The master terminates this transmission by issuing a stop condition, omitting the ninth clock cycle acknowledge. Refer to Fig. 4 for the sequence of address, acknowledge and data transfer.

SEQUENTIAL READ

Sequential Read can be initiated as either a current address read or random read. The first data are transmitted as with the other read mode, however, the master now responds with an acknowledge, indicating it requires additional data. The SPD continues to output data for each acknowledge received. The master terminates this transmission by issuing a stop condition, omitting the ninth clock cycle acknowledge. Refer to Fig. 5 for the sequence of address, acknowledge and data transfer.

The data output is sequential, with the data from address(n) followed by the data from address(n+1). The address counter for read operations increments all address bits, allowing the entire memory contents to be serially read during one operation. At the end of the address space (address 255), the counter "rolls over" to address 0 and the SPD continues to output data for each acknowledge received.


4. DC CHARACTERISTICS

Parameter	Note	Symbol	Condition	Value		Unit
Farameter	Parameter Note Symbol		Condition	Min.	Max.	
Input Leakage Current		Sili	0 V ≤ V _{IN} ≤ V _{CC}	-10	10	μΑ
Output Leakage Current		SILO	0 V ≤ Vout ≤ Vcc	-10	10	μΑ
Output Low Voltage	*1	Svol	IoL = 3.0 mA	_	0.4	V

Note: *1. Referenced to Vss.

5. AC CHARACTERISTICS

No	Parameter	Symbol	Value		I Init
No.	Farameter		Min.	Max.	Unit
1	SCL Clock Frequency	fscL	_	100	KHz
2	Noise Suppression Time Constant at SCL, SDA Inputs	Tı	_	100	ns
3	SCL Low to SDA Data Out Valid	t AA	_	3.5	μs
4	Time the Bus Must Be Free Before a New Transmission Can Start	t BUF	4.7	_	μs
5	Start Condition Hold Time	thd:STA	4.0	_	μs
6	Clock Low Period	tLOW	4.7	_	μs
7	Clock High Period	t HIGH	4.0	_	μs
8	Start Condition Setup Time	tsu:sta	4.7	_	μs
9	Data in Hold Time	thd:dat	0	_	μs
10	Data in Setup Time	tsu:dat	250	_	ns
11	SDA and SCL Rise Time	t R	_	1	μs
12	SDA and SCL Fall Time	t⊧	_	300	ns
13	Stop Condition Setup Time	tsu:sto	4.7	_	μs
14	Data Out Hold Time	tон	100	_	ns
15	Write Cycle Time	t wr	_	15	ms

■ PACKAGE DIMENSION

168-pin plastic DIMM (socket type) (MDS-168P-P26)		
	T.B.D.	
		Dimension in mm (inches)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka

Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan

Tel: (044) 754-3763 Fax: (044) 754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC.

Semiconductor Division 3545 North First Street

San Jose, CA 95134-1804, U.S.A.

Tel: (408) 922-9000 Fax: (408) 922-9179

Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST)

Tel: (800) 866-8608 Fax: (408) 922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan

New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220

http://www.fmap.com.sg/

F9710

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.